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REAL-WORLD SECURITY
It’s about value, locks, and punishment. 

· Locks good enough that bad guys don’t break in very often.

· Police and courts good enough that bad guys that do break in get caught and punished often enough.

· Less interference with daily life than value of loss. 

Security is expensive—buy only what you need.

· People do behave this way

· We don’t tell them this—a big mistake

· Perfect security is the worst enemy of real security

Elements of Security

Policy:
Specifying security

What is it supposed to do? 

Mechanism:
Implementing security

How does it do it? 

Assurance:
Correctness of security

Does it really work? 

Abstract Goals for Security

Secrecy
controlling who gets to read information

Integrity
controlling how information changes or resources are used

Availability
providing prompt access to information and resources

Accountability
knowing who has had access to information or resources

Dangers 
Dangers

Vandalism or sabotage that 

· damages information
integrity 

· disrupts service
availability
Theft of money
integrity
Theft of information
secrecy
Loss of privacy
secrecy
Vulnerabilities

Vulnerabilities
· Bad (buggy or hostile) programs
· Bad (careless or hostile) people 
giving instructions to good programs
· Bad guys corrupting or eavesdropping on communications
Threats

· Adversaries that can and want to exploit vulnerabilities
Defensive strategies

Coarse: Isolate—Keep everybody out 

· Disconnect
Medium: Exclude—Keep the bad guys out

· Code signing, firewalls

Fine: Restrict—Let the bad guys in, but keep them from doing damage

· Hardest to implement

· Sandboxing, access control

Recover—Undo the damage. Helps with integrity.
· Backup systems, restore points
Punish—Catch the bad guys and prosecute them
· Auditing, police
Assurance

Trusted Computing Base (TCB)
· Everything that security depends on

· Must get it right

· Keep it small and simple

Elements of TCB 

· Hardware

· Software
· Configuration
Defense in depth
Assurance: Defense in Depth

Network, with a firewall

Operating system, with sandboxing

· Basic OS (such as NT)

· Higher-level OS (such as Java)

Application that checks authorization directly

All need authentication
TCB Examples

Policy: Only outgoing Web access

TCB: firewall allowing outgoing port 80 TCP connections, but no other traffic 
Hardware, software, and configuration
Policy: Unix users can read system directories, and read and write their home directories

TCB: hardware, Unix kernel, any program that can write a system directory (including any that runs as superuser).

Also /etc/passwd, permissions on all directories.
TCB: Configuration

Done again for each system, unlike HW or SW

· New chance for mistakes each time

Done by amateurs, not experts
· No learning from experience
· Little training

Needs to be very simple

· At the price of flexibility, fine granularity

Making Configuration Simple
Users—keep it simple

· At most three levels: self, friends, others

Three places to put objects

· Everything else done automatically with policies

Administrators—keep it simple

· Work by defining policies. Examples:

Each user has a private home folder

Each user in one workgroup with a private folder

System folders contain vendor-approved releases

All executable programs signed by a trusted party

Today’s systems don’t support this very well

Assurance: Configuration Control
It’s 2 am. Do you know what software is running on your machine?

Secure configuration ( some apps don’t run

· Hence must be optional: “Secure my system”

· Usually used only in an emergency

Affects the entire configuration

· Software: apps, drivers, macros

· Access control: shares, authentication

Also need configuration audit

Why We Don’t Have “Real” Security

A. People don’t buy it
· Danger is small, so it’s OK to buy features instead.

· Security is expensive.

Configuring security is a lot of work.

Secure systems do less because they’re older.

· Security is a pain. 

It stops you from doing things.

Users have to authenticate themselves.

B. Systems are complicated, so they have bugs.

· Especially the configuration

“Principles” for Security
Security is not formal

Security is not free 

Security is fractal 

Abstraction can’t keep secrets

· “Covert channels” leak them 

It’s all about lattices 

ELEMENTS OF SECURITY
Policy:
Specifying security

What is it supposed to do? 

Mechanism:
Implementing security

How does it do it? 

Assurance:
Correctness of security

Does it really work? 

Specify: Policies and Models

Policy  —
specifies the whole system informally.
Secrecy
Who can read information?

Integrity
Who can change things, and how?

Availability 
How prompt is the service?

Model—specifies just the computer system, but does so precisely.

Access control model
guards control access 
to resources.
Information flow model
classify information, prevent disclosure.

Implement: Mechanisms and Assurance

Mechanisms — tools for implementation.
Authentication
Who said it?

Authorization
Who is trusted?

Auditing 
What happened?

Trusted computing base.

Keep it small and simple.

Validate each component carefully.

 Information flow model
(Mandatory security)
A lattice of labels for data:
· unclassified < secret < top secret; 

· public < personal < medical < financial
label( f (x)) = max(label( f ), label(x))
Labels can keep track of data properties: 

· how secret 
Secrecy  

· how trustworthy
Integrity 

When you use (release or act on) the data, user needs a ( clearance 

Access Control Model
Guards control access to valued resources.
[image: image1]
Access Control
Guards control access to valued resources.
Structure the system as —

Objects
entities with state.

Principals
can request operations 

on objects.

Operations
how subjects read or change objects.
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Access Control Rules

Rules control the operations allowed
for each principal and object.

	Principal may do
	Operation      on
	Object

	Taylor
	Read
	File “Raises”

	Lampson
	Send “Hello”
	Terminal 23

	Process 1274
	Rewind
	Tape unit 7

	Schwarzkopf
	Fire three shots
	Bow gun

	Jones
	Pay invoice 432
	Account Q34


Mechanisms—The Gold Standard

Authenticating principals

· Mainly people, but also channels, servers, programs (encryption makes channels, so key is a principal)

Authorizing access

· Usually for groups, principals that have some property, such as “Microsoft employee” or “type-safe” or “safe for scripting”

Auditing
Assurance

· Trusted computing base 

Standard Operating System Security

Assume secure channel from user (without proof)

Authenticate user by local password

· Assign local user and group SIDs

Access control by ACLs: lists of SIDs and permissions

· Reference monitor is the OS, or any RPC target

Domains: same, but authenticate by RPC to controller

Web servers: same, but simplified

· Establish secure channel with SSL

· Authenticate user by local password (or certificate)

· ACL on right to enter, or on user’s private state
NT Domain Security

Just like OS except for authentication

OS does RPC to domain for authentication

· Secure channel to domain

· Just do RPC(user, password) to get user’s SIDs

Domain may do RPC to foreign domain

· Pairwise trust and pairwise secure channels

· SIDs include domain ID, so a domain can only authenticate its own SIDs
Web Security Today

Server: Simplified from single OS

· Establish secure channel with SSL

· Authenticate user by local password (or certificate)

· ACL on right to enter, or on user’s private state

Browser (client): Basic authentication

· Of server by DNS lookup, or by SSL + certificate

· Of programs by supplier’s signature

Good programs run as user

Bad ones rejected or totally sandboxed

END-TO-END EXAMPLE
Alice is at Intel, working on Atom, a joint Intel-Microsoft project

Alice connects to Spectra, Atom’s web page, with SSL

[image: image2]
Chain of responsibility
Alice at Intel, working on Atom, connects to Spectra, Atom’s web page, with SSL
Chain of responsibility: 


KSSL ( Ktemp ( KAlice 

( Alice@Intel ( Atom@Microsoft  ( Spectra

[image: image3]
Principals

Authentication:
Who sent a message?

Authorization:
Who is trusted?
Principal — abstraction of “who”:

People
Lampson, Taylor
Machines
VaxSN12648, Jumbo
Services
SRC-NFS, X-server
Groups
SRC, DEC-Employees
Roles
Taylor as    Manager
Joint authority
Taylor and Lampson
Weakening
Taylor or     UntrustedProgram
Channels
Key #7438
Theory of Principals

Principal says statement
P says s 

Lampson says “read /SRC/Lampson/foo”

SRC-CA says “Lampson’s key is #7438”

Axioms

If A says s and A says (s implies s') then A says s'
If A = B then (A says s) = (B says s)

The “Speaks for” Relation  
Principal A speaks for B about T
A T B 
If A says something in set T, B does too: 

Thus, A is stronger than B, or responsible for B, about T
Precisely: (A says s) ( (s ( T) implies (B says s)

These are the links in the chain of responsibility
Examples

Alice
 Atom
group of people
Key #7438
 Alice
key for Alice
Delegating Authority
How do we establish a link in the chain: a fact Q ( R
The “verifier” of the link must see evidence, of the form
“P  says Q ( R”

There are three questions about this evidence
· How do we know that P says the delegation?
· Why do we trust P for this delegation?
· Why is P willing to say it?
How Do We Know P says X?
	If P is
	then

	a key
	P signs X cryptographically

	some other channel
	message X arrives on channel P

	the verifier itself
	X is an entry in a local database


These are the only ways that the verifier can directly know who said something: receive it on a secure channel or store it locally

Otherwise we need C ( P, where C is one of these cases
· Get this by recursion
Why Do We Trust The Delegation?
We trust A to delegate its own authority.

Delegation rule: If P  says Q ( R then Q ( R
Reasonable if P is competent and accessible.
Why Is P Willing To Delegate To Q? 
Some facts are installed manually 
· KIntel ( Intel, when Intel and Microsoft establish a direct relationship 
· The ACL entry Lampson ( usr/Lampson
Others follow from the properties of some algorithm 
· If Diffie-Hellman yields KDH, then I can say 
“KDH ( me, provided 
You are the other end of the KDH run  
You don’t disclose KDH to anyone else

You don’t use KDH to send anything yourself.” 

In practice I simply sign KDH ( Kme
Why Is P Willing To Delegate To Q? 
Others follow from the properties of some algorithm 
· If server S starts process P from and sets up a channel C from P, it can say C ( SQLv71
Of course, only someone who believes S ( SQLv71 will believe this
To be conservative, S might compute a strong hash HSQLv71 of SQLv71.exe and require 
Microsoft says “HSQLv71 ( SQLv71” 
before authenticating C
Chain of responsibility

Alice at Intel, working on Atom, connects to Spectra, Atom’s web page, with SSL
Chain of responsibility: 


KSSL ( Ktemp ( KAlice 

( Alice@Intel ( Atom@Microsoft  ( Spectra

[image: image4]
Authenticating Channels
Chain of responsibility: 

	KSSL
	(
	Ktemp
	(
	KAlice
	(
	Alice@Intel
	( ...

	Ktemp says
	
	KAlice says
	
	
	
	
	

	(SSL setup)
	(via smart card)
	
	
	
	



[image: image5]
Authenticating Names: SDSI
A name is in a name space, defined by a principal P

· P is like a directory. The root principals are keys. 

Rule: P speaks for any name in its name space
KIntel ( Intel ( Intel/Alice   (= Alice@Intel)


[image: image6]
Authenticating Names
KIntel ( Intel ( Intel/Alice   (= Alice@Intel)
	Ktemp
	(
	KAlice
	(
	Alice@Intel
	( ...

	
	
	KIntel says
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Authenticating Groups
A group is a principal; its members speak for it

· Alice@Intel
( Atom@Microsoft

· Bob@Microsoft
( Atom@Microsoft

· …

Evidence for groups: Just like names and keys.
KMicrosoft ( Microsoft ( Microsoft/Atom 

(= Atom@Microsoft)

[image: image8]
Authenticating Groups
KMicrosoft ( Microsoft ( Atom@Microsoft
	... (
	KAlice
	(
	Alice@Intel
	(
	Atom@Microsoft
	( ...

	
	
	
	KMicrosoft says
	
	
	



[image: image9]
Authorization with ACLs
View a resource object O as a principal

P on O’s ACL means P can speak for O

· Permissions limit the set of things P can say for O

If Spectra’s ACL says Atom can r/w, that means

Spectra says Atom@Microsoft (r/w Spectra

[image: image10]
Authorization with ACLs
Spectra’s ACL says Atom can r/w
	...(
	Alice@Intel
	(
	Atom@Microsoft
	(r/w
	Spectra

	
	
	
	Spectra says
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End-to-End Example: Summary
Request on SSL channel: KSSL says “read Spectra”
Chain of responsibility: 


KSSL ( Ktemp ( KAlice 

( Alice@Intel ( Atom@Microsoft  ( Spectra

[image: image12]
Compatibility with Local OS?

(1) Put network principals on OS ACLs

(2) Let network principal speak for local one

· Alice@Intel  Alice@microsoft
· Use network authentication 

replacing local or domain authentication

· Users and ACLs stay the same

(3) Assign SIDs to network principals

· Do this automatically

· Use network authentication as before

Summaries

The chain of responsibility can be long

Ktemp says KSSL ( Ktemp
KAlice says Ktemp ( KAlice
KIntel says KAlice ( Alice@Intel
KMicrosoft says Alice@Intel ( Atom@Microsoft
Spectra says Atom@Microsoft (r/w Spectra
Can replace a long chain with one summary certificate 
Spectra says KSSL (r/w Spectra 
Need a principal who speaks for the end of the chain

This is often called a capability 
Lattice of Principals

A and B 
max, least upper bound
(A and B) says s  (A says s) and (B says s)
A  or   B 
min, greatest lower bound
(A  or   B) says s  (A says s)  or  (B says s)
Now A  B  ( A = A and B ) ( B = A or B )
Thus is the lattice’s partial order

Could we interpret this as sets? Not easily: and is not intersection
Facts about Principals
A = B is equivalent to (A  B) and (B  A)

 is transitive

and, or are associative, commutative, and idempotent

and, or are monotonic:

If A'  A then
(A' and B)  (A and B)


(A'  or   B)  (A  or  B)
Important because a principal may be stronger than needed
Lattices: Information Flow to Principals
A lattice of labels:

· unclassified < secret < top secret; 

· public < personal < medical < financial
Use the same labels as principals, and let represent clearance

· lampson  secret 
Or, use names rooted in principals as labels
· lampson/personal, lampson/medical
Then the principal can declassify
SECURE CHANNELS
A secure channel:

• says things directly
C says s 
• has known
possible receivers
secrecy

possible senders
integrity 
• if P is the only possible sender, then
C   P 
Examples

Within a node: operating system (pipes, etc.)

Between nodes: 

Secure wire
difficult to implement

Network
fantasy for most networks

Encryption
practical

Names for Channels

A channel needs a name to be authenticated properly

· KAlice says Ktemp ( KAlice
It’s not OK to have
· KAlice says “this channel ( KAlice”
unless you trust the receiver not to send this on another channel!

· Thus it is OK to authenticate yourself by sending a password to amazon.com on an SSL channel already authenticated (by a Verisign certificate) as going to Amazon.
Multiplexing a Channel

Connect n channels A, B, ... to one channel X to make n new sub-channels X|A, X|B, ...  Each subchannel has its own address on X
The multiplexer must be trusted
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Quoting

 A | B 
A quoting B
A | B says s  A says (B says s) 

Axioms

| is associative

| distributes over and, or
A *A|B A | B
Multiplexing a Channel: Examples

	Multiplexer
	Main channel
	Subchannels
	Address

	OS
	node–node
	process–process 
	port or process ID 

	Network routing 
	node–network 
	node–node 
	node address 


Signed Secure Channels

The channel is defined by the key: If only A knows K–1, then K  A (Actually, if only A uses K–1, then K  A)
K says s is a message which K can verify

[image: image14]
The bits of “K says s” can travel on any path
Abstract Cryptography: Sign/Verify
Verify(K, M, sig) = true iff sig = Sign(K', M) and K' = K-1
· Is sig K’s signature on M?
Concretely, with RSA public key:
· Sign(K-1, M) = RSAencrypt(K-1, SHA1(M))

· Verify(K, M, sig) = (SHA1(M) = RSAdecrypt(K, sig))
Concretely, with AES shared key:
· Sign(K, M) 
= 
SHA1(K, SHA1(K || M))
· Verify(K, M, sig)
= (
SHA1(K, SHA1(K || M)) = sig)

Concrete crypto is for experts only!

Abstract Cryptography: Seal/Unseal
Unseal(K-1, Seal(K, M)) = M, and without K-1 you can’t learn anything about M from Seal(K, M)

Concretely, with RSA public key:
· Seal(K, M)
=
RSAencrypt(K-1, IV || M)

· Unseal(K, Msealed) 
=
RSAdecrypt(K, M sealed).M
Concretely, with AES shared key:
· Seal(K, M)
= 
AESencrypt(K, IV || M)

· Unseal(K, M sealed)
=
AESdecrypt(K, M sealed).M
Concrete crypto is for experts only!

Sign and Seal

Normally when sealing must sign as well! 
· Seal(Kseal-1, M || Sign(K sign-1, M))

Often Sign is replaced with a checksum ???
Concrete crypto is for experts only!
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Public Key vs. Shared Key

Public key: K ( K-1
· Broadcast
· Slow

· Non-repudiable (only one possible sender)

· Used for certificates

Key ( name: KIntel says KAlice ( Alice@Intel
Temp key ( key:
Ktemp says KSSL ( Ktemp

KAlice says Ktemp ( KAlice
Shared key: K = K-1
· Point to point

· Fast
Can simulate public key with trusted on-line server
How Fast is Encryption?

	
	 
	
	Use
	Notes

	rsa encrypt
	
5

	ms (25 KB/s)
	sign
	1000 bit modulus

	rsa decrypt
	
0.2

	ms (625 KB/s)
	verify
	Exponent=17

	sha-1
	
70

	MBytes/s
	sign
	hmac

	aes
	
50

	MBytes/s
	seal
	256 bit key


On 2 GHz Pentium, Microsoft Visual C++. Data from Wei Dai at www.cryptopp.com
Might be 2x faster with careful optimization
Fast Encryption in Practice

Want to run at network speed.

How? Put encryption into the data path.

Network interface parses the packet to find a 
key identifier and maps it to a key for decryption
Parsing depends on network protocol (e.g., TCP/IP)
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Messages on Encrypted Channels

If K says s, we say that s is signed by K
Sometimes we call “K says s” a certificate
The channel isn’t real-time: K says s is just bits
K says s can be viewed as

•
An event: s transmitted on channel K
•
A pile of bits which makes sense if you know the decryption key
•
A logical formula
Messages vs. Meaning

Standard notation for Seal(Kseal-1, M || Sign(K sign-1, M)) is {M}K. This does not give the meaning
Must parse message bits to get the meaning
· Need unambiguous language for all K’s messages

· In practice, this implies version numbers 
Meaning could be a logical formula, or English

· A, B, {K}KCA means C says (to A) “K is a key”. C says nothing about A and B. This is useless

· {A, B, K}KCA means C says “K is a key for A to talk to B”. C says nothing about when K is valid

· {A, B, K, T}KCA means C says “K is a key for A to talk to B first issued at time T”

Replay

Encryption doesn’t stop replay of messages.

Receiver must discard duplicates.

This means each message must be unique.

Usually done with sequence numbers.

Receiver must remember last sequence number while the key is valid.

Transport protocols solve the same problem.

Timeliness 

Must especially protect authentication against replay
If C says KA ( A to B and Eve records this, she can get B to believe in KA just by replaying C’s message.

Now she can replay A’s commands to B.

If she ever learns KA, even much later, she can also impersonate A.

To avoid this, B needs a way to know that C’s message is not old.

Sequence numbers impractical—too much long-term state.

Timestamps and Nonces 

Timestamps

With synchronized clocks, C just adds the time T, saying to B
KC says KA  A at T
Nonces

Otherwise, B tells C a nonce NB which is new, and C sends to B
KC says KA  A after NB 
NAMES FOR PRINCIPALS
Authorization is to named principals. Users have to read these to check them.
Lampson may read file report
Root names must be defined locally

 KIntel ( Intel
From a root you can build a path name
Intel/Alice   (= Alice@Intel)
With a suitable root principals can have global names.

/DEC/SRC/Lampson may read file  /DEC/SRC/udir/Lampson/report
Authenticating Names
KIntel ( Intel ( Intel/Alice   (= Alice@Intel)

	Ktemp
	(
	KAlice
	(
	Alice@Intel
	( ...

	
	
	KIntel says
	
	
	



[image: image17]
Authenticating a Channel

Authentication — who can send on a channel.
C  P; C is the channel, P the sender.

Initialization — some such facts are built in: Kca   CA.
To get new ones, must trust some principal, a certification authority.

Simplest: trust CA to authenticate any name:

CA Anybody 
Then CA can authenticate channels:

Kca   says Kws   WS
Kca   says Kbwl   bwl
One-Way Authentication
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Mutual Authentication
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This also works with shared keys, as in Kerberos.

Who Is The CA

“Built In”

CA’s in browsers
· There are lots

· Because of politics
· Look at Tools / Internet options / Content / Publishers / 
Trusted root certification authorities
This is a configuration problem
Revocation

Revoke a certificate by making the receiver think it’s invalid.
To do this fast, the source of certificates must be online.
This loses a major advantage of public keys, and reduces security.

Solution: countersigning —

An offline CAassert, highly secure.

An online CArevoke, highly timely.

Both must sign for the certificate to be believed, i.e.,

CAassert and CArevoke  Anybody 
Large-Scale Authentication

A large system can’t have CA  Anybody.

Instead, must have many CA's, one for each part.

One natural way is based on a naming hierarchy:

A tree of directories with principals as the leaves
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Large-Scale Authentication: Example

Keep trust as local as possible:

Authenticating A to B needs trust only up to 
least common ancestor 
dec  for
/dec/lampson  /dec/abadi
root for
/dec/lampson  /mit/clark
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Rules for Path Names

New operator except:

Informally, P except M can speak for P / N as long as N ≠ M

Axioms

	P
	except M
	 P
	
	

	(P
	except M) | N
	 P / N except ‘..’
	if N ≠ M
	child

	(P / N
	except M) | ‘..’
	 P except N
	if N ≠ ‘..’
	parent


Effect: Authentication can traverse the tree outward from the starting point, but can never retrace its steps

Rules for Path Names: Example

Start with  Clampson
 /dec/lampson except nil
known
Clampson
says
Cdec
 /dec except lampson
parent
Cdec 
says
Croot
 / except dec
parent
Croot 
says
Cmit
 /mit except “..”
child
Cmit
says
Cclark
 /mit/clark except “..”
child
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Trusting Fewer Authorities: Cross-Links 

For less trust, add links to the tree

Now lampson trusts only dec for
  /dec/lampson  /dec/mit/clark
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Login

Chain of responsibility: 

	KSSL
	(
	Ktemp
	(
	KAlice
	(
	Alice@Intel
	( ...

	Ktemp says
	
	KAlice says
	
	
	
	
	

	(SSL setup)
	(via smart card)
	
	
	
	



[image: image24]
Authenticating Users

Goals

Hide the secret that authenticates the user

Authenticate without disclosing it

Let a node N speak for the user:  N  Alice
Method

KAlice  Alice
KAlice says N  Alice
KAlice–1 is the user’s secret  

It can be stored encrypted by her password, 
or better, held inside a smart card.

Identifying Nodes for Login Delegation
Usually a workstation has no permanent identity
· Not true for servers

· Workstation might have a “meets ITG policy” identity

Need a temporary principal for Alice to delegate to at login
Generate login session key Ktemp
User Credentials

CA generates:

· user key:
KAlice–1 

· child certificate:
KCA  says KAlice   Alice
Certificate is public
Where to keep KAlice–1?

· Smart card

· Encrypted by password
· On a server

Server-mediated Login

Workstation talks to login server
Server confining user’s presence

· Password

· One-time password

· Time-varying password

· Smart card

· Biometrics
Two-factor Authentication
Problems with passwords

Advantages of physical “tokens”

What if token is stolen?

Combine token and something tied to user

· Password / PIN

· Biometrics

Problem with passwords: exhaustive search

Problems with biometrics: not secret, can’t change

Login with Node Identity
Check Kca  says KAlice  Alice
Generate Ktemp –1, a login session key.

Delegate to session key K temp and node key Kn 

KAlice   says (Ktemp and Kn)   KAlice   

Then the session key countersigns with a short timeout, say 30 minutes:


Ktemp says Kn   Ktemp 

OS discards Ktemp –1 at logout, and the delegation expires within 30 minutes.

GROUPS and Group Credentials

Defining groups: A group is a principal; its members speak for it
Alice@Intel
 Atom@Microsoft
Bob@Microsoft
 Atom@Microsoft
. . .

Proving group membership: Use certificates
K Microsoft says Alice@Intel
 Atom@Microsoft
Authenticating Groups
KMicrosoft ( Microsoft ( Atom@Microsoft
	... (
	KAlice
	(
	Alice@Intel
	(
	Atom@Microsoft
	( ...

	
	
	
	KMicrosoft says
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What Is A Group

Set of principals

· Alice@Intel  Atom@Microsoft
Principals with some property

· Resident over 21 years old

· Type-checked program

Can think of the group (or property) as an attribute of each principal that is a member
Certifying Properties
Need a trusted authority: CA  typesafe
· Actually KMS says CA  KMS / typesafe
Usually done manually

Can also be done by a program P
· A compiler

· A class loader 

· A more general proof checker

Logic is the same: P  typesafe
· Someone must authorize the program:

· KMS says P  KMS / typesafe
Groups As Parameters

An application may have some “built-in” groups
Example: In an enterprise app, each division has
· groups: manager, employees, finance, marketing
· folders: budget, advertising plans, ...
Thus, the steel division is an instance of this, with
· steelMgr, steelEmps, steelFinance, steelMarketing
· folders: steelBudget, steelAdplans, ...
P and Q: Separation of Duty

Often we want two authorities for something.

A and B says s = (A says s) ( (B says s)

We use a compound principal with and to express this:

Lampson
and Taylor
two users

Lampson
and Ingres
user running an application
CAassert
and CArevoke
online and offline CAs
P or Q: Weakening

Sometimes want to weaken a principal

A or B says s = (A says s) ( (B says s)

· A ( B says “read f ” needs both AR f and BR f 
· Example: Java rule—callee  caller ( callee-code

· Example: NT restricted tokens—if process P is running untrusted-code for blampson then
P  blampson ( untrusted-code
P as R: Roles

To limit its authority, a principal can assume a role.

People assume roles: Lampson as Professor
Machines assume roles as nodes by running OS programs: Vax#1724 as bsd4.3a4 = Jumbo
Nodes assume roles as servers by running services:

Jumbo as SRC-NFS
Metaphor:
a role is a program

Encoding:
A as R  A | R 
if R is a role

Axioms:
A *A|R A as R
if R is a role 

B for A:  Melding
B for A:  B acting on behalf of A
Workstation22 for Lampson
Ingres for Lampson
Axiom: 
(A | B) and (B | A)  B for A 

To delegate —

A offers:
A | B
says
B | A  B for A
B accepts:
B | A
says
B | A  B for A
Together:
(A | B  and B | A)
says
B | A  B for A
Final delegation:


B | A  B for A 
Using a Meld
Suppose the ACL for file foo says

SRC-WS for Lampson may read “foo”
If we know
WS22  SRC-WS 
then
WS22 for Lampson may read “foo”
Meld Example: Login Credentials

Get Kbwl–1 from Encrypt(PW, Kbwl–1) with user’s password
Check Kca  says Kbwl   bwl
Offer meld to node key Kn:

Kbwl | Kn   says 
Kn  (Kws as Taos) for Kbwl  

Node accepts meld (given Kn   Kws as Taos):

Kn | Kbwl  says 
Kn  (Kws as Taos) for Kbwl  

And from the for axiom & handoff

Kn  (Kws as  Taos) for Kbwl 

An Example
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Example: Details
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AUTHENTICATING SYSTEMS: Loading
A digest X can authenticate a program SQL:

· KMicrosoft says “If image I has digest X then I is SQL”

formally
X  KMicrosoft / SQL
· This is just like KAlice ( Alice@Intel 

But a program isn’t a principal: it can’t say things

To become a principal, a program must be loaded into a host H

· Booting is a special case of loading

X  SQL makes H

· want to run I if H likes SQL

· willing to assert that SQL is running
Authenticating Systems: Roles
A loaded program depends on the host it runs on.

· We write H as SQL for SQL running on H

· H as SQL says s   =   H says SQL says s

H can’t prove that it’s running SQL
But H can be trusted to run SQL
· KTCS says 
H as SQL  KTCS / SQL
This lets H convince others that it’s running SQL
· H says C  KTCS / SQL
Node Credentials

Machine has some things accessible at boot time.

A secret Kws–1 


A trusted CA key Kca
Boot code does this:

Reads Kws–1 and then makes it unreadable.

Reads boot image and computes digest Xtaos.

Checks Kca  says Xtaos   Taos.

Generates Kn–1, the node key.
Signs credentials Kws says Kn  Kws as Taos 
Gives image Kn–1 , Kca , credentials, but not Kws–1.
Other systems are similar: Kws as Taos as Accounting
Node Credentials: Example
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Example: Server’s Access Control 

	Kws  says Kn   Kws as Taos
	node 
	credentials 

	Kbwl  says Kn  

(Kws as Taos) for Kbwl  
	login session 
	

	Kn  says C   Kn
	channel 
	

	C says C | pr   (Kws as Taos 
as Accounting) for Kbwl 
	process 
	

	C | pr says “read file foo”
	
	request
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Sealed Storage: Load and Unseal

Instead of authenticating a new key for a loaded system,

· Kws says Kn  Kws as Taos
Unseal an existing key
· SK = Seal(KWSseal-1, < ACL: Taos, Stuff: KTaosOnWS-1>)
· Save(ACL: Taos, Stuff: KTaosOnWS-1>) returns SK
· Open(SK) returns KTaosOnWS-1if caller Taos
Assurance: NGSCB (Palladium)

A cheap, convenient, “physically” separate machine

A high-assurance OS stack (we hope)

A systematic notion of program identity

· Identity = digest of (code image + parameters)

Can abstract this: KMS says digest ( KMS / SQL
· Host certifies the running program’s identity:
     H says  K ( H as P
· Host grants the program access to sealed data

H seals (data, ACL) with its own secret key

H will unseal for P if P is on the ACL 
NGSCB Hardware

Protected memory for separate VMs

Unique key for hardware
Random number generator

Hardware attests to loaded software

Hardware seals and unseals storage

Secure channels to keyboard, display
NGSCB Issues
Privacy: Hardware key must be certified by manufacturer
· Use Kws to get one or more certified, anonymous keys from a trusted third party

· Use zero-knowledge proof that you know a mfg-certified key

Upgrade: v7of SQL needs access to v6 secrets

· v6 signs “v7 ( v6”
· or, both ( SQL

Threat model: Other software

· Won’t withstand hardware attacks
NGSCB Applications

Keep keys secure

Network logon

Authenticating server

Authorizing transactions
Digital signing

Digital rights management
Need app TCB: factor app into 

· a complicated , secure part that runs on Windows

· a simple, secure part that runs on NGSCB
AUTHORIZATION in Access Control
Guards control access to valued resources.
Structure the system as —

Objects
entities with state.

Principals
can request operations 

on objects.

Operations
how subjects read or change objects.
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Authorization Rules

Rules control the operations allowed
for each principal and object.

	Principal may do
	Operation      on
	Object

	Taylor
	Read
	File “Raises”

	Lampson
	Send “Hello”
	Terminal 23

	Process 1274
	Rewind
	Tape unit 7

	Schwarzkopf
	Fire three shots
	Bow gun

	Jones
	Pay invoice 432
	Account Q34


Access Matrix
	
	File Raises
	Account Q34
	Tape unit 7

	Lampson
	read
	deposit
	

	Process 1274
	read/write
	
	r/w/rewind

	Finance dept
	
	deposit/ withdraw
	


Representing the Access Matrix
		O1
	O2
	O3

	P1

	T11
	T12
	
	P2
	T21
		T23

	P3

		T32
	

	
	Capability

	          ACL
	


Prefer ACLs for long-tem authorization
· Usually need to audit who can access a resource

Capabilities are fine as a short-term cache

· OS file descriptors for open files
Authorization with ACLs
View a resource object O as a principal

P on O’s ACL means P can speak for O

· Permissions limit the set of things P can say for O

If Spectra’s ACL says Atom can r/w, that means

Spectra says Atom@Microsoft (r/w Spectra
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Access Control Lists (ACLs)
Object O’s ACL says: principal P may access O.

Lampson may read and write O
(Jumbo for SRC) may append to O
ACLs need named principals so people can read them.

Checking access:

Given
a request
Q says read O 

an acl
P may read/write O 

Check that
Q speaks for P
Q P 


rights suffice
read/write ≥ read
Permissions

Principal A speaks for B about T
A T B 
If A says something in set T, B does too: 

Thus, A is stronger than B, or responsible for B, about T
· Precisely: (A says s) ( (s ( T) implies (B says s)

Permissions represent sets of statements

· P may read/write O     =    P r/w O
Traditionally they appear only in ACLs, not in delegations, which are unrestricted

T can specify some objects and some of their methods
Expressing sets of statements. 
SDSI / SPKI uses “tags” to define sets of statements
A tag is a regular expression, that is, a set of strings 
The object interprets a string as a set of statements

· Read(*.doc) = reads of files named *.doc

· < 5000 = purchase orders less than $5000
Also can express unions and intersections of sets 
· Read(*.doc) and < 5000
Expressive T allows bigger objects: a single permission for all .doc files 
Transitivity: Intersecting Sets

If A T B and B U C then A T(U C
Why?

A T B ≡ (A says s) ( (s ( T) implies (B says s)

B U C ≡ (B says s) ( (s ( U) implies (C says s)

How to implement set intersection ?
· Might be able to simplify the expression

· Always can test s against both T and U
Pragmatics

Authorization must be 

· set up 

· later checked for correctness 
· changed as life goes on
This works best when the authorization data is small and simple

But, want to authorize the “least privilege” needed to get the job done

Conflict. Who wins?
Keeping Authorization Simple
ACLs on large sets of resources

· Big subtrees of the file system

· Large sets of web sites

Usually for groups, principals that have some property, such as “Microsoft employee” or “type-safe” or “safe for scripting”
IMPLEMENTATION
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Process Credentials

Make a node-to-node channel C = des(Ksr) using shared key encryption.

Establishing Ksr yields C  Kn.
The OS multiplexes this single channel among processes.

The OS issues credentials for the subchannels C | pr.
More multiplexing lets a process speak for several principals.
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API for Authentication

Prin represents principals, with a subtype Auth for that a process can speak for
AID is an Auth identifier, a byte string 

Authenticating messages

GetChan(dest:Address): Chan; 

GetAID(p:Auth): AID; 

Send(dest:Chan; m:Msg); 

Receive(): (Chan, Msg); 

GetPrin(c:Chan; aid:AID): Prin;

RPC marshals an Auth parameter and unmarshals an aid automatically, thus hiding all these procedures 
API for Authentication (2)

Authorization
Check(acl:ACL; p:Prin): BOOL

Managing principals

Inheritance(): ARRAY OF Auth;

Login (name, password: TEXT): Auth; 

AdoptRole(a:Auth; role:TEXT): Auth; 

Offer (a:Auth; b:Prin): Auth; 

Claim(b:Auth; meld:Prin): Auth;

Discard(a:Auth; all:BOOL);

API for Melding

Offer (a:Auth; b:Prin): Auth; 

Claim(b:Auth; meld :Prin): Auth;

[image: image34.png]b,
Delegate (a,p,)

o ——

A, A says BA=B for A

Clain(b,p.) —pwd

»r
A says BASE for 4





Implementation Internals
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Secure Channel, Authority Managers 
The secure channel manager creates process-to-process secure channels. 
TYPE ChanID = { nk:KeyDigest; pr:INT; addr:Address };

GetChanID(ch:Chan): ChanID; 

PTagFromChan(c:ChanID): PTag;

The authority manager associates Auths with processes and handles authentication requests. 
TYPE PrinID = { ch:ChanID; aid:AID };

Delegate(a:Auth; ptag:PTag); 

PurgePTag(ptag: PTag); 
Credentials Manager 
Maintains credentials for local processes and validates certificates from other nodes. 
TYPE Cred = TEXT, CredT = ...;

New(name, password: TEXT): CredT; 

AdoptRole(t:CredT; role: TEXT): CredT; 

Sign(t:CredT; p:PrinID): Cred; 

Validate(cr:Cred; p:PrinID): TEXT; 

Extract(cr:Cred): Cred; 

SignMeld(t:CredT; cr:Cred): Cred; 

ClaimMeld(t:CredT; cr:Cred): CredT;

Certification Library 
Establishes a trusted mapping between principal names and keys, and between groups and their members.
CheckKey(name:TEXT; k:Key): BOOL; 

IsMember(name, group: TEXT): BOOL; 

CheckImage(d:Digest; prog, cert: TEXT);


Interfaces to Authentication

There are two styles:

Implicit in communication

Authenticate at connection establishment; a client can find out the principal that the connection speaks for.

Authenticate as part of a remote procedure call; the procedure can find the principal the caller speaks for.

Explicit

Pass the sending principal explicitly in every message.

More flexible: can pass more than one principal.

Either way abstracts authentication protocol details.

The interface just tell you the authenticated principal.

Implementing Authentication: Push vs. Pull
Two ways for receiver B to authenticate sender A:

Push credentials: sender to receiver (Windows SIDs):
A sends B credentials of channel C: proof that C  A.  

Pull credentials: receiver from sender (ACLs, Taos):
A just sends to B on C.  B calls back to A to get credentials. B may cache them 

Variations

A pushes part of the credentials, and B pulls the rest.

B gets part of the credentials from A, stores part himself, and gets part from network services.

Pull Authentication: Example

Process pr sends on C | pr; OS multiplexes C.

Receiver’s auth agent asks for C | pr credentials.
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Abbreviations

Extend pull to names:
· Sender has some long names for principals
· Choose a short (integer, byte string) abbreviation for each name

· AID is an example

· Send the short name; if receiver doesn’t know its definition, it calls back to pull it over
Short names must not be reused

Receiver can discard its short name cache anytime

· It will be refreshed by pull if needed
Example: Details
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The Example Reviewed

	Kws  says Kn   Kws as Taos
	node 
	credentials 

	Kbwl  says Kn  

(Kws as Taos) for Kbwl  
	login session 
	

	Kn  says C   Kn
	channel 
	

	C says C | pr   (Kws as Taos 
as Accounting) for Kbwl 
	process 
	

	C | pr says “read file foo”
	
	request
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Bytes vs. Secure Data 

Can choose the the flow and storage of encrypted bytes optimize 
· simplicity

· performance
· availability.

Public key = off-line broadcast channel. 
· Write certificate on a tightly secured offline system 
·  Store it in untrusted system; anyone can verify it. 
Certificates are secure answers to pre-determined queries, (for example, “What is Alice’s key?”) not magic. 
· It’s the same to query an on-line secure database (say Kerberos KDC) over a secure channel
Caching Secure Data 

Caching can greatly improve performance 
It doesn’t affect security or availability 
· as long as there’s always a way to reload the cache if gets cleared or invalidated
Auditing 
Checking access:

Given
a request
Q says read O 

an ACL
P may read/write O 

Check that
Q speaks for P
Q  P 

rights are enough
read/write ≥ read
Auditing

Each step is justified by 

a signed statement, or

a rule

Implement: Tools and Assurance

Services — tools for implementation
Authentication
Who said it?

Authorization
Who is trusted?

Auditing 
What happened?

Trusted computing base 

Keep it small and simple
Validate each component carefully
The “Speaks for” Relation  
Principal A speaks for B about T
A T B 
If A says something in set T, B does too: 

Thus, A is stronger than B, or responsible for B, about T
Precisely: (A says s) ( (s ( T) implies (B says s)

These are the links in the chain of responsibility
Examples

Alice
 Atom
group of people
Key #7438
 Alice
key for Alice
Chain of responsibility

Alice at Intel, working on Atom, connects to Spectra, Atom’s web page, with SSL
Chain of responsibility: 


KSSL ( Ktemp ( KAlice 

( Alice@Intel ( Atom@Microsoft  ( Spectra
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References
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