48 IEEE TRANSACTIONS

*
d) Comparative studies of types of computer facilities
such as on-line, off-line, and hybrid installations.
Comparative studies of performance cilectiveness of
broad classes of program languages with respect to
representative programming problems, for machine-
oriented, procedure-oriented, and problem-oriented
languages.
Systematie collection, analysis and evaluation of the
empirical characteristics, correlates and variation asso-
ciated with individual performance differences for
programmers, including analysis of team effectiveness
and team differences.
Development of cost effectiveness models for com-
puting facilities, incorporating man and machine
elements, with far greater emphasis on empirically
validated measures of effectivencss, and less emphasis
on abstract and over-simplified models than has been
the case in the past.
Detailed case histories on the genesis and course of
programmer problem-solving, the frequency and nature
of human and machine errors in the problem-solving
process, the role of realtime machine feedback and

e)

g)

h)

ON HUMAN FACTORS IN ELECTRONICS, VOL. HFE-S, No. 1, MarcH 1067

reinforcement in programmer behavior, and the delin-
eation of critical programmer decision points in the
life-cycle of the design, development, and installation
of computer programs.

And finally, integration of the above findings into the
broader arena of man-computer communication for the
general user,

1)

More powerful applied research on programmer per-
formance, including experimental comparisons of on-line
and off-line programming, will require the development
in depth of basic concepts and procedures for the field
as o whole, as roughly indicated by the above broad
areas of applied research.

ACKNOWLEDGMENT

We are indebted to R. L. McCornack for consultation
and statistical services at SDC, to R. M. Berger at the
University of Southern California for the administration
of the Basic Programming Knowledge Test, and to many
colleagues at SDC who critically reviewed the results or
who participated as subjects.

A Critique of “An Exploratory Investigation of
Programmer Performance Under On-Line

and Off-Line Conditions”

BUTLER W.

Abstract—The preceding paper by Grant and Sackman, “An
Exploratory Investigation of Programmer Performance Under
On-Line and Off-Line Conditions’ is discussed critically. Primary
emphasis is on this paper’s failure to consider the meaning of the
numbers obtained. An understanding of the nature of an on-line
system is necessary for proper interpretation of the observed
results for debugging time, and the results for computer time are
critically dependent on the idiosyncracies of the system on which the
work was done. Lack of attention to these matters cannot be com-
pensated for by any amount of statistical analysis. Furthermore,
many of the conclusions drawn and suggestions made are too vague
to be useful.

INTRODUCTION

T IS GENERALLY accepted in the computing field
that experimental data on the performance of pro-
grammers in various environments are both needed

Manuseript received September 19, 1966.
The author is with the Department of Electrical Engineering,
University of California, Berkeley, Calif.

LAMPSON

and sadly lacking. It is also generally recognized that
such information is difficult to acquire because of the
cost of conducting experiments with statistieally signifi-
cant numbers of subjects. What is perhaps less widely
appreciated, however, is the fact that the raw data which
emerge from programmers’ time sheets and computer
aceounting records must be interpreted with the greatest
caution, not only because of the wide variations in
programmers’ ability and the large number of factors
which influence their performance, but also, and more
important, because of the enormous differences among
computer systems, differences which often depend on
rather subtle technieal considerations. It is simply not
true that data taken in a particular environment, with a
particular machine, lunguage, and operating system, have
any direct relationship to the results that may be expected
in a different environment, even if the adjectives “time-
sharing” or *‘on-line” can be applied to both. To take a
very down-to-curth example, a difference of 50 percent

1967

in turnaround time in a batch processing system can
drastically change the performance of programmers (and
their morale), yet differences of this order between two
installations using the same equipment are not at all
uncommon. The differences among time-sharing systems
in the present state of the art are far more significant.

It is the purpose of this paper to point out a number of
factors which cast the gravest doubt on the general
applicability of the results presented in the paper by
Grant and Sackman [1] which is under consideration.
These remarks should not be regarded as a condemnation
of the experiment which they conducted; any attempt
to obtain quantitative data on the performance of pro-
grammers or computer systems is laudable in our present
state of ignorance about these matters, even if it serves
primarily to reveal some of the methodological pitfalls
of such investigations. The major point of the succeeding
sections is that in these experiments a scrious attempt
is needed to understand the significance of the property
being measured; efforts to determine the relationship
between this property and the numbers actually obtained
by observation are, although important, necessarily sec-
ondary. Aitention will be concentrated primarily on the
comparison of on-line and off-line conditions. Before we
plunge into these matters, however, a few general com-
ments may be in order.

For one unfamiliar with the niceties of statistical
analysis it is difficult to view with any feeling other than
awe the elaborate edifice which the authors have erected
to protect their data from the cutting winds of statistical
insignificance. It does seem, however, that there is a
basic weakness in an experiment which, finding that one
group of programmers takes 60 percent longer than
another to code an Algebra problem, is unable to conclude
that this difference is not the result of chance. Even with
regard to differences which are significant according to
the statistical tests being used, such as a ratio of about
2 to 1 for programmer time in favor of on-line debugging,
the analysis offers no guarantee that this figure is correct.
In other words, it is not possible to regard the results of
this experiment as anything but qualitative indications
of relative performance. The large standard deviations
and small sample size make the actual numbers quite
unreliable. The cure for this would seem to lie in the
construction of better experiments rather than in a
reliance on elaborate analysis to salvage something from
bad ones.

N

Ox-LINE SYsSTEMS

We turn now to a consideration of the nature of on-line
systems. A time-sharing console is a device with enormous
potentialities. If they are to be realized, however, carefully
designed programs are needed to provide the console
user with the services he nceds. If these programs are
slow, incomplete or cumbersome to use, much of the
value of the system is lost. A good deal of nonquantitative
evidence has been accumulated in the last few years as
to the importance of good interactive software. The JOSS

LAMPSON ! CRITIQUE OF INVESTIGATION OF PROGRAMMER PERFORMANCE 49

system at RAND [6] and OPS at MAC (7] are only the
best-known examples.

The relevance of these facts to the experiment being
considered is twofold. Virst of all, the JTS language (8]
and compiler in which almost all of the experimental
programs were writien is not an ideal on-line tool. To
write and run a program under this system requires the
following steps.

1) Type the program into the TSS editor [9], a program
for ereating and modifying text.

2) Call in the JTS compiler to convert the program into
the binary form in which it ean be run. The entire
program must be compiled at the same time, and any
change in it requires a complete recompilation. The
time required for a program like the Algebraic Inter-
preter is one or two minutes of computer time and
10 or 15 minutes of console time. If the computer
detects any errors, go back to step 1 to fix them and
try again.

3) Load the binary into core, where it can be run, ex-
amined, and altered in machine language using the
TSS DBUG [10] commands. The program can be
referenced only with octal absolute addresses; the data
can be referenced symbolically by the name given it
in the source language program. Program changes
must be made in machine language, and with octal
addresses. Any change to the source language requires
editing and recompilation (see step 2 above).

This may be called a separated system. It is to be
compared with integrated on-line source-language debug-
ging, which is implemented or planned for most com-
mercial time-sharing systems [2]-[5]). The user types his
program into the compiler, which offers all the features
for modifying it that the editor provides, but also checks
each statement for correctness and generates an error
comment if it is in error. When enough has been typed
in to make a workable section, he runs it. If errors are
made, they are corrected on the spot. The programmer
works in source-language at all times and does not have
to learn two different forms of representing his program.
The time required to change one source line is about 10
seconds, rather than 10 minutes. The price of this power
in machine time is considered in the next section.

But the Q-32 implementation even of the separated
procedure leaves much to be desired. Because logically
distinct parts of the program cannot be compiled sep-
arately, both programmer and machine time are wasted
in repeated recompilation of debugged sections of code.
The TSS editor is altogether lacking in the convenience
and power that users of commercial systems will demand.
And the debugging system, requiring the user to deal
with his program (although not his data) in octal addresses
instead of symbolic ones, is cumbersome and inconvenient.
The atmosphere of the system is summarized by a remark
in the DBUG manual: “ Any user who wants more detailed
information coneerning an error can type SERROR/ and
present his teletype copy to TSS personncl.” The possi-

50 IEEE TRANSACTIONS ON HUMAN FACTORS IN ELECTRONICS

bility that the computer might be able to provide in-
formative messages ix apparently not considered.

It is not, of course, the fault of the experiment that
these deficiencies exist; the reason for discussing them is
to clarify the differences between the “on-line” debugging
studied by Grant and Sackman and the facilities which
are available in true on-line systems, and hence the
significance of the numbers arrived at in this study. It
is interesting that the Q-32 system reduces debugging
time by a factor of about two from the time required in an
“off-line”’ system, but this fact cannot be regarded as
more than a suggestion of the performance to be expected
from more sophisticated systems.

CoyruTER TIME

The results obtained for the expenditure of computer
time suffer from much the same problems as the ones
for programmer time: the Q-32 system has characteristies
entirely different from those of later time-sharing systems
now commercially available. This section is devoted
to a discussion of some of these differences, although
one which, for obvious reasons, has been greatly over-
simplified.

The factors contributing to the use of machine time
in a time-sharing system are not widely known. Confusion
in this area stems from a failure to understand the impli-
cations of frequent interaction between the user and the
computer and from the complexities of the scheduling
and accounting algorithms which can be used. The first
point is more important, and consideration of a misleading
statement in the paper may serve to clarify it.

Discussing the choice of programming language for
the experiment, Grant states that off-line coding in a
language like JTS places less demand on a time-sharing
system than on-line coding in an interactive language.
Although this is probably the case for the Q-32 system,
it is by no means true in general. In a properly designed
system such as the SDS 910 or GIS 645, the cost of having
a terminal attached and active is very low as long as
the user is not doing anything: perhaps 50 words of core,
a couple of thousand on a drum, and one teletype input
channcl, equipment with a total rental of $50/month in
one of the commercial systems now on the market. The
teletype itself is worth anywhere from $15 to S60/month.
Altogether, an hourly cost of fifty cents is probably
about right.

Of course, the cost rises if the user initiates a com-
putation. In a system which is capable of overlapping
input/output (including the operation of swapping the
user between core memory and the drum on which he
resides when not active) with computation, however,
the amount of CPU time used by simple but common
operations such as editing is rather small, and a con-
siderable number of such operations ean be accommodated
without greatly affecting the: performance of the system.
These remarks may appeur to be inconsistent with Grant
and Sackman’s statement that a good deal of machine
time was used by the on-line editor. The explanation is

MARCH

that the Q-32 system does not overlap swapping with
computation, so that the cost of a small interaction of
the kind which is constantly occurring in the editor is
artificially inflated.

The cost of allowing the user to enter his program
interactively at the console is rather small. On the other
hand, the amount of computer time saved by an inter-
active system can be considerable, beeause the cost of
correcting an error in the source language is much less
than in a system like JTS. In the former case only one
statement nced be recompiled, while in the latter the
entire program must be processed. As Grant points out,
a large part of the machine time expended by the on-line
subjects was used in recompilations. It therefore appears
likely that on-line machine time would be significantly
reduced by an interactive language; this fact is inde-
pendent of the advantages of interaction for the pro-
grammer, which have already been discussed.

Consideration of computer time may properly be con-
cluded by some mention of its cost relative to programmer
time, since the entire issue of on-line versus off-line is
primarily a question of economics. Time on systems which
are very roughly comparable to the Q-32 TSS can be pur-
chased commercially for about $350/hour, and this figure
may be expected to decline significantly in the near future.
A reasonable minimum for the cost of an hour of pro-
grammer time is $10. On the basis of these figures and the
totals in Table I of Grant and Sackman’s paper, it is
easy to see that programmer debugging time cost more
than twice as much as the machine time used for the
same purpose. A convineing case can, therefore, be made
for the limited application of the maxim: “Don’t think,
compute.” A fairer, though less pithy, statement of it
might be: “Let the machine do the dirty work; it’s a
lot cheaper.”

TrvrxArROUND TIME

The authors present in Section 6.3 a discussion of the
effect of changing the off-line turnaround time. It is
difficult to know what to say about this discussion:
its “exploratory’” nature blunts the edge of criticism.
There does not, however, seem to be any reason for
taking seriously the graph of dcbugging time against
turnaround time presented in their Fig. 2, since the
assumption of linearity on which it is based has no
foundation in empirical data and a weak one in intuition
about programmer behavior.

Furthermore, it is not clear what the difference is
between short response time and the “interactive features”
of the Q-32 system. As the last two scctions have indi-
cated, this system does in fact often look to the user
like a low-turnaround ofi-line system beeause of the design
of much of its software.

In the absence of any altempt to determine the actual
effects of varying the turnaround time, the entire section
seems to be unnecessary, especially in view of the fact
that it ends with the statement that it has suggested
“'some hypotheses, derived from the observed data, that

1967

might be explored in such studies.” A careful qualitative
consideration of the factors likely to bear on the elfects
of changing turnaround time would have been more
valuable. The question of the significant differences
between 5-minuie turnaround and on-line operation is
certainly an open one, but Grant and Sackman have
not contributed to its resolution.

CoxcLusioN

Perusal of the paper leaves a sirong impression that
the authors are not in close touch with reality. They
have ignored a number of vital factors bearing on the
interpretation of their results, some of which have been
discussed above. Furthermore, some of the conclusions
they draw and many of their suggestions for further
work are questionable.

Much is made, for example, of the differences between
Algebra and Maze problems. In fact, however, these
problems are very similar when viewed against the back-
ground of the problems for which many programs are
written, There are, for instance, small numerical problems
for which a language like JOSS is suited; large numerical
problems like matrix inversions; major commercial data
processing jobs requiring months of effort; and large
system programs. Furthermore, it is observed that good
programmers are able to turn their attention from one
class of problems to another with relative ease. This
fact throws doubt on the 'differentiation hypothesis,”
which is not really supported by the data. The failure
of experience to correlate with performance offers no
evidence that specialized experience is any more valuable
than general. Intuition would suggest that innate ability is
the most important factor in performance after a certain
amount of familiarity with computers has been obtained,
and that knowledge of techniques and methods of organi-
zation, rather than experience in their use, is next in
importance. The idea that programming should be split
up into a lot of little compartmented areas is a most
unfortunate one.

LAMPSON: CRITIQUE OF INVESTIGATION OF PROGRAMMER PERFORMANCE 51

Another remarkable conclusion is that “it is apparent
from the spread of the data that very substantial savings
can be eficcted by successfully detecting and reassigning
low performers to other positions.” Everv supervisor of
programmers knows this perfectly well. Unfortunately,
its practical application is not so casy because of the
extreme shortage of high performers. Programming differs
little from other creative work in this regard.

Finally, the broad areas for further research proposed
at the end of the paper can be summarized very briefly

(2}

as a proposal to “study computers and their users:
That this is a laudable goal will be disputed by few readers.

REFERENCES

1] E. E. Grant and H. Sackman, “An exploratory investigation of
programmer performance under on-line and off-line condi-
tions,” IEEE Trans. on Human Faclors in Electronics, this
issue, page 33.

[2) W. W. Lichtenberger and M. W. Pirtle, “A facility for experi-
mentation in man-machine interaction,” Proc. 1965 Fall AFIPS
Joint Compuler Conf., pt. 1, vol. 27, pp. 589-598.

[3] B. W. Lampson, W. W. Lichtenberger, and M. W. Pirtle,
“A user machine in a time-sharing system,”’ Proc. IEEE,
vol. 54, pp. 1766-177+, December 1966.

[4] W. T. Comfort, ‘A computing syvstem design for user service,”
Proc. 1965 Fall AFIPS Joint Computer Conf., pt. 1, vol. 27,
pp. 610-625.

[5) F.J. Corbato and V. A. Vyssotsky, “Introduction and overview
of the Multies system,” Proc. 1965 Fall AFIPS Joint Computer
Con/., pt. 1, vol. 27, pp. 185-196.

6] J. C. Shaw, “JOSS: A designer’s view of an experimental
on-line computing system,” Proc. 1965 Fall AFIPS Joint
Computer Conf., pt. 1, vol. 27, pp. 455-464.

[7] M. Greenberger and M. Jones, “On-line simulation in the

?‘%2 system,” Proc. 21st National Conf. ACM, pp. 131-138,

966.

Phyllis R. Kennedy, “JTS user’s guide,” System Development

Corporation, Santa Monica, Calif., SDC TM-1577 /002 /00,

August, 1965.

[9] S. M. Aranda, “Q-32 time-sharing system user’s guide, execu-
tive service: svmbolic file maintenance (EDIT),” System
Development Corporation, Santa Monica, Calif., SDC-TN-
2708/202 /00, February, 1066.

[10] 8. M. Aranda, “Q-32 time-sharing system user’s guide, execu-
tive service: context editing (IZDTXT),” System Development
Corporation, Santa Moniea, Culif., SDC-TM-27058/204,00,
March 1966.

[11] R. R. Linde, “Q-32 time-zharing system user’s guide, executive
service: debugging (DBUG),” Syvstem Development Corpora-
tion, Santa Monica, Calif., SDC-TM-2708/390/00, April 1966.

(8

—

